Crear actividad

Determinantes posesivos

(127)
Completar los huecos con el determinante posesivo correspondiente
lengua 6º primaria Edad recomendada: 11 años
9396 veces realizada

Creada por

Top 10 resultados

  1. 1
    Christian Nitcheu
    00:42
    tiempo
    186
    puntuacion
  2. 2
    Pablo Segura Andrés
    00:03
    tiempo
    100
    puntuacion
  3. 3
    Oier Carvalho
    00:03
    tiempo
    100
    puntuacion
  4. 4
    raiser de calle
    00:03
    tiempo
    100
    puntuacion
  5. 5
    Seve waite
    00:03
    tiempo
    100
    puntuacion
  6. 6
    Lluc Simonet
    00:03
    tiempo
    100
    puntuacion
  7. 7
    Santiago Tur Ferrer
    00:03
    tiempo
    100
    puntuacion
  8. 8
    Eneko Pérez López
    00:03
    tiempo
    100
    puntuacion
  9. 9
    Gabriela García  Hernández
    00:03
    tiempo
    100
    puntuacion
  10. 10
    Borja González  Cano
    00:03
    tiempo
    100
    puntuacion
¿Quieres aparecer en el Top 10 de esta actividad? Inicia sesión para identificarte.
Crea tu propia actividad gratis desde nuestro creador de actividades
Compite contra tus amigos para ver quien consigue la mejor puntuación en esta actividad

8 Comentarios

Inicia sesión para escribir un comentario.
  1. miki ._.
    ?
    18 de Noviembre de 2022 15:41
  2. HALA MADRID Y NADA MAS
    Agua
    Ir a la navegaciónIr a la búsqueda
    Para otros usos de este término, véase Agua (desambiguación).

    El agua en la naturaleza se encuentra en sus tres estados: líquido fundamentalmente en los océanos, sólido (hielo en los glaciares, icebergs y casquetes polares), así como nieve (en las zonas frías) y vapor (invisible) en el aire.

    El ciclo hidrológico: el agua circula constantemente por el planeta en un ciclo continuo de evaporación, transpiración, precipitaciones y desplazamiento hacia el mar.

    El agua es un elemento esencial para mantener nuestras vidas. El acceso al agua potable reduce la expansión de numerosas enfermedades infecciosas. Necesidades vitales humanas, como el abastecimiento de alimentos, dependen de ella. Los recursos energéticos y las actividades industriales que necesitamos también dependen del agua.1​
    El agua (del latín aqua) es una sustancia cuya molécula está compuesta por dos átomos de hidrógeno y uno de oxígeno (H2O) unidos por un enlace covalente.2​ El término agua, generalmente, se refiere a la sustancia en su estado líquido, aunque esta puede hallarse en su forma sólida, llamada hielo, y en su forma gaseosa, denominada vapor.2​ Es una sustancia bastante común en la Tierra y el sistema solar, donde se encuentra principalmente en forma de vapor o de hielo. Es indispensable para el origen y sustento de la vida.

    El agua cubre el 71 % de la superficie de la corteza terrestre.3​ Se localiza principalmente en los océanos, donde se concentra el 96,5 % del total. A los glaciares y casquetes polares les corresponde el 1,74 %, mientras que los depósitos subterráneos (acuíferos), los permafrost y los glaciares continentales concentran el 1,72 %. El restante 0,04 % es el agua dulce disponible en el planeta, de la cual depende la vida en el mismo, que se reparte en orden decreciente entre lagos, humedad del suelo, atmósfera, embalses, ríos y seres vivos.4​ La vida en la tierra está directamente relacionada al agua. Las personas están compuestas de agua corporal que varía del 45 al 73%.

    El agua circula constantemente en un ciclo de evaporación o transpiración (evapotranspiración), precipitación y desplazamiento hacia el mar. Los vientos la transportan en las nubes, como vapor de agua, desde el mar, y en sentido inverso tanta agua como la que se vierte desde los ríos en los mares, en una cantidad aproximada de 45 000 km³ al año. En tierra firme, la evaporación y transpiración contribuyen con 74 000 km³ anuales, por lo que las precipitaciones totales son de 119 000 km³ cada año.5​

    Se estima que aproximadamente el 70 % del agua dulce se destina a la agricultura.6​ El agua en la industria absorbe una media del 20 % del consumo mundial, empleándose en tareas de refrigeración, transporte y como disolvente en una gran variedad de procesos industriales. El consumo doméstico absorbe el 10 % resta nte.7​ El acceso al agua potable se ha incrementado durante las últimas décadas en prácticamente todos los países.8​9​ Sin embargo, estudios de la FAO estiman que uno de cada cinco países en vías de desarrollo tendrá problemas de escasez de agua antes de 2030; en esos países es vital un menor gasto de agua en la agricultura, modernizando los sistemas de riego.7​


    Índice
    1 Propiedades físicas y químicas
    1.1 Estados
    1.2 Sabor, olor y aspecto
    1.3 Propiedades moleculares
    1.4 Propiedades eléctricas y magnéticas
    1.5 Propiedades mecánicas
    1.6 Reacciones químicas
    2 Distribución del agua en la naturaleza
    2.1 El agua en el Universo
    2.2 El agua en el sistema solar
    2.3 El agua y la zona habitable
    3 El agua en la Tierra
    3.1 Distribución del agua en el manto terrestre
    3.2 El ciclo del agua
    3.3 El océano
    3.3.1 Mareas
    3.4 El agua dulce en la naturaleza
    4 Efectos sobre la vida
    4.1 Vida acuática
    5 Efectos sobre la civilización humana
    5.1 El agua como derecho humano
    5.2 Agua para beber: necesidad del cuerpo humano
    5.2.1 Desinfección del agua potable
    5.2.2 Dificultades en el mundo para acceder al agua potable
    5.3 El uso doméstico del agua
    5.3.1 Recomendaciones para el cuidado del agua en el hogar
    5.4 El agua en la agricultura
    5.5 El uso del agua en la industria
    5.5.1 El agua como transmisor de calor
    5.5.2 Procesamiento de alimentos
    5.5.3 Aplicaciones químicas
    5.6 El agua empleada como disolvente
    5.7 Otros usos
    5.7.1 El agua como extintor de fuego
    5.7.2 Deportes y diversión
    5.7.3 Como estándar científico
    5.8 La contaminación y la depuración del agua
    5.8.1 La depuración del agua para beber
    5.8.2 La depuración del agua residual
    6 Necesidad de políticas de protección
    7 Religión, filosofía y literatura
    8 Notas
    9 Referencias
    10 Bibliografía
    11 Enlaces externos
    Propiedades físicas y químicas
    Artículo principal: Molécula de agua

    La geometría de la molécula de agua es la causante de una buena parte de sus propiedades, por su elevada constante dieléctrica y actuar como dipolo.

    Copo de nieve visto a través de un microscopio. Está coloreado artificialmente.
    El agua es una sustancia que químicamente se formula como H2O, es decir, que una molécula de agua se compone de dos átomos de hidrógeno enlazados covalentemente a un átomo de oxígeno.

    Fue Henry Cavendish quien descubrió en 1782 que el agua es una sustancia compuesta y no un elemento, como se pensaba desde la antigüedad.n. 1​ Los resultados de dicho descubrimiento fueron desarrollados por Antoine Laurent de Lavoisier, dando a conocer que el agua está formada por oxígeno e hidrógeno.10​11​ En 1804, el químico francés Louis Joseph Gay-Lussac y el naturalista y geógrafo alemán Alexander von Humboldt demostraron que el agua estaba formada por dos volúmenes de hidrógeno por cada volumen de oxígeno (H2O).11​

    Actualmente se sigue investigando sobre la naturaleza de este compuesto y sus propiedades, a veces traspasando los límites de la ciencia convencional.n. 2​ En este sentido, el investigador John Emsley, divulgador científico, dijo del agua que «(Es) una de las sustancias químicas más investigadas, pero sigue siendo la menos entendida».12​

    Estados

    Diagrama de fases del agua.

    Animación de cómo el hielo pasa a estado líquido en un vaso. Los 50 minutos transcurridos se concentran en 4 segundos.
    El agua es un líquido en el rango de temperaturas y presiones más adecuado para las formas de vida conocidas: a la presión de 1 atm, el agua es líquida entre las temperaturas de 273,15 K (0 °C) y 373,15 K (100 °C). Los valores para el calor latente de fusión y de vaporización son de 0,334 kJ/g y 2,23 kJ/g respectivamente.13​

    Al aumentar la presión, disminuye ligeramente el punto de fusión, que es de aproximadamente −5 °C a 600 atm y −22 °C a 2100 atm. Este efecto es el causante de la formación de los lagos subglaciales de la Antártida y contribuye al movimiento de los glaciares.14​15​ A presiones superiores a 2100 atm el punto de fusión vuelve a aumentar rápidamente y el hielo presenta configuraciones exóticas que no existen a presiones más bajas.

    Las diferencias de presión tienen un efecto más dramático en el punto de ebullición, que es aproximadamente 374 °C a 220 atm, mientras que en la cima del Monte Everest, donde la presión atmosférica es de alrededor de 0,34 atm, el agua hierve a unos 70 °C. El aumento del punto de ebullición con la presión se puede presenciar en las fuentes hidrotermales de aguas profundas, y tiene aplicaciones prácticas, como las ollas a presión y motores de vapor.16​La temperatura crítica, por encima de la cual el vapor no puede licuarse al aumentar la presión es de 373,85 °C (647,14 K).13​

    A presiones por debajo de 0,006 atm, el agua no puede existir en el estado líquido y pasa directamente del sólido al gas por sublimación, fenómeno explotado en la liofilización de alimentos y compuestos.17​ A presiones por encima de 221 atm, los estados de líquido y de gas ya no son distinguibles, un estado llamado agua supercrítica. En este estado, el agua se utiliza para catalizar ciertas reacciones y tratar residuos orgánicos.

    La densidad del agua líquida es muy estable y varía poco con los cambios de temperatura y presión. A la presión de una atmósfera, la densidad mínima del agua líquida es de 0,958 kg/l, a los 100 °C. Al bajar la temperatura, aumenta la densidad constantemente hasta llegar a los 3,8 °C donde alcanza una densidad máxima de 1 kg/l. A temperaturas más bajas, a diferencia de otras sustancias, la densidad disminuye.18​ A los 0 °C, el valor es de 0,9999 kg/l; al congelarse, la densidad experimenta un descenso más brusco hasta 0,917 kg/l, acompañado por un incremento del 9 % en volumen, lo que explica el hecho de que el hielo flote sobre el agua líquida.

    Sabor, olor y aspecto
    Artículo principal: Color del agua
    El agua como tal no tiene olor, ni color ni sabor, sin embargo, el agua en la Tierra contiene minerales y sustancias orgánicas en disolución que le pueden aportar sabores y olores más o menos detectables según la concentración de los compuestos y la temperatura del agua.19​El agua puede tener un aspecto turbio si contiene partículas en suspensión.20​ La materia orgánica presente en el suelo, como los ácidos húmicos y fúlvicos, también imparte color, así como la presencia de metales, como el hierro.19​ En la ausencia de contaminantes, el agua líquida, sólida o gaseosa apenas absorbe la luz visible, aunque en el espectrógrafo se prueba que el agua líquida tiene un ligero tono azul verdoso. El hielo también tiende al azul turquesa. El color que presentan las grandes superficies de agua es en parte debido a su color intrínseco, y en parte al reflejo del cielo.21​ Por el contrario, el agua absorbe fuertemente la luz en el resto del espectro, procurando protección frente a la radiación ultravioleta.22​

    Propiedades moleculares

    Cada molécula de agua se compone de dos átomos de hidrógeno unidos por enlaces covalentes a un átomo de oxígeno. A su vez las distintas moléculas de agua se unen por unos enlaces por puentes de hidrógeno. Estos enlaces por puentes de hidrógeno entre las moléculas del agua son responsables de la dilatación térmica del agua al solidificarse, es decir, de su aumento de volumen al congelarse.

    El impacto de una gota sobre la superficie del agua provoca unas ondas características, llamadas ondas capilares.

    Acción capilar del agua y el mercurio, que produce la variación en la altura de las columnas de cada líquido y forma diferentes meniscos en el contacto con las paredes del recipiente.

    Estas gotas se forman por la elevada tensión superficial del agua.
    La molécula de agua adopta una geometría no lineal, con los dos átomos de hidrógeno formando un ángulo de 104,45 grados entre sí. Esta configuración, junto con la mayor electronegatividad del átomo de oxígeno, le confieren polaridad a la molécula, cuyo momento dipolar eléctrico es de 6,2 × 10−30 C m.23​

    La polaridad de la molécula de agua da lugar a fuerzas de Van der Waals y la formación de hasta cuatro enlaces de hidrógeno con moléculas circundantes.24​ Estos enlaces moleculares explican la adhesividad del agua, su elevado índice de tensión superficial y su capilaridad, que es responsable de la formación de ondas capilares, permite a algunos animales desplazarse sobre la superficie del agua y contribuye al transporte de la savia contra la gravedad en las plantas vasculares, como los árboles.25​26​ La presencia en el agua de ciertas sustancias surfactantes, como jabones y detergentes, reduce notablemente la tensión superficial del agua y facilita la retirada de la suciedad adherida a objetos.18​

    Los puentes de hidrógeno entre las moléculas de agua también son responsables de los elevados puntos de fusión y ebullición comparados con los de otros compuestos de anfígeno e hidrógeno, como el sulfuro de hidrógeno. Asimismo, explican los altos valores de la capacidad calorífica —4,2 J/g/K, valor solo superado por el amoníaco—, el calor latente y la conductividad térmica —entre 0,561 y 0,679 W/m/K—. Estas propiedades le dan al agua un papel importante en la regulación del clima de la Tierra, mediante el almacenamiento del calor y su transporte entre la atmósfera y los océanos.27​28​

    Otra consecuencia de la polaridad del agua es que, en estado líquido, es un disolvente muy potente de muchos tipos de sustancias distintas. Las sustancias que se mezclan y se disuelven bien en agua —como las sales, azúcares, ácidos, álcalis y algunos gases (como el oxígeno o el dióxido de carbono, mediante carbonación)— son llamadas hidrófilas, mientras que las que no combinan bien con el agua —como lípidos y grasas— se denominan sustancias hidrófobas. Igualmente, el agua es miscible con muchos líquidos, como el etanol, y en cualquier proporción, formando un líquido homogéneo. Puede formar azeótropos con otros disolventes, como el etanol o el tolueno.29​ Por otra parte, los aceites son inmiscibles con el agua, y forman capas de variable densidad sobre su superficie. Como cualquier gas, el vapor de agua es miscible completamente con el aire.

    Propiedades eléctricas y magnéticas
    El agua tiene una constante dieléctrica relativamente elevada (78,5 a 298 K o 25 °C) y las moléculas de sustancias con carga eléctrica se disocian fácilmente en ella.30​ La presencia de iones disociados incrementa notablemente la conductividad del agua que, por el contrario, se comporta como un aislante eléctrico en estado puro.31​

    El agua puede disociarse espontáneamente en iones hidronios H3O+ e hidróxidos OH-. La constante de disociación Kw es muy baja —10−14 a 25 °C—, lo que implica que una molécula de agua se disocia aproximadamente cada diez horas.32​ El pH del agua pura es 7, porque los iones hidronios e hidróxidos se encuentran en la misma concentración. Debido a los bajos niveles de estos iones, el pH del agua varía bruscamente si se disuelven en ella ácidos o bases.

    Es posible separar el agua líquida en sus dos componentes hidrógeno y oxígeno haciendo pasar por ella una corriente eléctrica, mediante electrólisis. La energía requerida para separar el agua en sus dos componentes mediante este proceso es superior a la energía desprendida por la recombinación de hidrógeno y oxígeno.33​

    El agua líquida pura es un material diamagnético y es repelida por campos magnéticos muy intensos.34​

    Propiedades mecánicas
    El agua líquida puede considerarse a efectos prácticos como incompresible, efecto que es aprovechado en las prensas hidráulicas;35​ en condiciones normales, su compresibilidad abarca valores desde 4,4 hasta 5,1 × 10−10 Pa−1.36​ Incluso a profundidades de 2 km, donde la presión alcanza unas 200 atm, el agua experimenta una disminución de volumen de solo un 1 %.37​

    La viscosidad del agua es de unos 10−3 Pa·s o 0,01 poise a 20 °C, y la velocidad del sonido en agua líquida varía entre los 1400 y 1540 m/s, dependiendo de la temperatura. El sonido se trasmite en el agua casi sin atenuación, sobre todo a frecuencias bajas; esta propiedad permite la comunicación submarina a largas distancias entre los cetáceos y es la base de la técnica del sonar para detectar objetos bajo el agua.38​

    Reacciones químicas
    El agua es el producto final de reacciones de combustión, ya sea del hidrógeno o de un compuesto que contenga hidrógeno. El agua también se forma en reacciones de neutralización entre ácidos y bases.39​

    El agua reacciona con muchos óxidos metálicos y no metálicos para formar hidróxidos y oxácidos respectivamente. También forma hidróxidos al reaccionar directamente con los elementos con mayor electropositividad, como los metales alcalinos y alcalinotérreos, que desplazan el hidrógeno del agua en una reacción que, en el caso de los alcalinos más pesados, puede llegar a ser explosiva debido al contacto del hidrógeno liberado con el oxígeno del aire.39​40​

    A causa de su capacidad de autoinozación, el agua puede hidrolizar otras moléculas.41​ Las reacciones de hidrólisis pueden producirse tanto con compuestos orgánicos como inorgánicos. Son muy importantes en el metabolismo de los seres vivos, que sintetizan numerosas enzimas denominadas hidrolasas con la función de catalizar la hidrólisis de diferentes moléculas.

    Distribución del agua en la naturaleza
    El agua en el Universo

    Superficie cubierta de hielo de Europa, un satélite de Júpiter. Se piensa que existe un océano de agua líquida bajo su superficie helada.
    El agua es un compuesto bastante común en nuestro sistema solar,42​ y en el universo,42​43​ donde se encuentra principalmente en forma de hielo y de vapor. Constituye una gran parte del material que compone los cometas y en 2016 se ha hallado «agua magmática» proveniente del interior de la Luna en pequeños granos minerales en la superficie lunar.44​ Algunos satélites de Júpiter y de Saturno, como Europa y Encélado, presentan posiblemente agua líquida bajo su gruesa capa de hielo.42​ Esto permitiría a estas lunas tener una especie de tectónica de placas donde el agua líquida cumple el rol del magma en la tierra, mientras que el hielo sería el equivalente a la corteza terrestre.[cita requerida]

    La mayor parte del agua que existe en el universo puede haber surgido como derivado de la formación de estrellas que posteriormente produjeron el vapor de agua al explotar. El nacimiento de las estrellas suele causar un fuerte flujo de gases y polvo cósmico. Cuando este material colisiona con el gas de las zonas exteriores, las ondas de choque producidas comprimen y calientan el gas. Se piensa que el agua es producida en este gas cálido y denso.45​

    Se ha detectado agua en nubes interestelares dentro de nuestra galaxia, la Vía Láctea. Estas nubes interestelares pueden condensarse eventualmente en forma de una nebulosa solar. Además, se piensa que el agua puede ser abundante en otras galaxias, dado que sus componentes (hidrógeno y oxígeno) están entre los más comunes del universo.46​ En la primera década del siglo XXI se encontró agua en exoplanetas, como HD 189733 b47​48​ y HD 209458 b.49​

    En julio de 2011, la revista Astrophysical Journal Letters publicó el hallazgo por un grupo de astrónomos del Laboratorio de Propulsión a Reacción (JPL) de la NASA y del Instituto de Tecnología de California (CALTECH) de una nube de vapor de agua que rodea el cuásar APM 08279+5255, que supone la mayor reserva de agua en el Universo descubierta hasta la fecha, unas 140 billones de veces más que en la tierra.50​

    El agua en el sistema solar

    Gotas de rocío suspendidas de una telaraña.
    Se ha detectado vapor de agua en la atmósfera de varios planetas, satélites y otros cuerpos del sistema solar, además de en el Sol mismo. A continuación se listan varios ejemplos:

    Mercurio: Se ha detectado en altas proporciones en la exosfera.51​
    Venus: 0,002 % en la atmósfera.52​53​
    Tierra: cantidades reducidas en la atmósfera, sujetas a variaciones climáticas.
    Marte: Cantidades variables dependiendo del lugar y la estación del año.54​
    Júpiter: 0,0004 % en la atmósfera.[cita requerida]
    Encélado (luna de Saturno): 91 % de su atmósfera.55​
    El agua en su estado líquido abunda en la Tierra, donde cubre el 71 % de la superficie. En 2015 la NASA confirmó la presencia de agua líquida en la superficie de Marte.56​

    Existen indicios de que la luna de Saturno Encélado cuenta con un océano líquido de 10 km de profundidad a unos 30-40 km debajo del polo sur del satélite;57​58​ también se cree que en Titán puede haber una capa de agua y amoníaco por debajo de la superficie,59​ y la superficie del satélite Europa de Júpiter presenta rasgos que sugieren la existencia de un océano de agua líquida en su interior.60​61​ En Ganimedes, otra luna de Júpiter, también podría haber agua líquida entre sendas capas de hielo a alta presión y de roca.62​ En 2015, la sonda espacial New Horizons halló indicios de agua en el interior de Plutón.63​

    Con respecto al hielo, existe en la Tierra, sobre todo en las zonas polares y glaciares; en los casquetes polares de Marte, también se encuentra agua en estado sólido, aunque están compuestos principalmente de hielo seco. Es probable que el hielo forme parte de la estructura interna de planetas como Urano, Saturno y Neptuno. El hielo forma una espesa capa en la superficie de algunos satélites, como Europa y en Titán, donde puede alcanzar los 50 km de grosor.64​

    También existe hielo en el material que forma los anillos de Saturno,65​ en los cometas66​ y objetos de procedencia meteórica, llegados por ejemplo desde el Cinturón de Kuiper o la Nube de Oort. Se ha hallado hielo en la Luna, y en planetas enanos como Ceres y Plutón.67​63​

    El agua y la zona habitable
    Artículo principal: Zona de habitabilidad
    La existencia de agua en estado líquido es necesaria para los seres vivos terrestres y su presencia se considera un factor importante en el origen y la evolución de la vida en el planeta.68​69​ La Tierra está situada en un área del sistema solar que reúne condiciones muy específicas, pero si estuviese un 5 % —ocho millones de kilómetros— más cerca o más lejos del Sol no podría albergar agua en estado líquido, solo vapor de agua o hielo.68​70​

    La masa de la Tierra también tiene un papel importante en el estado del agua en la superficie: la fuerza de la gravedad impide que los gases de la atmósfera se dispersen. El vapor de agua y el dióxido de carbono se combinan, causando lo que se conoce como el efecto invernadero, que mantiene la estabilidad de las temperaturas, actuando como una capa protectora de la vida en el planeta. Si la Tierra fuese más pequeña, la menor gravedad ejercida sobre la atmósfera haría que esta fuese menos espesa, lo que redundaría en temperaturas extremas e impediría la acumulación de agua excepto en los casquetes polares, tal como ocurre en Marte. Por otro lado, si la masa de la Tierra fuese mucho mayor, el agua permanecería en estado sólido incluso a altas temperaturas, dada la elevada presión causada por la gravedad.71​ Por lo tanto, tanto el tamaño de un planeta como la distancia a la estrella son factores en la extensión de la zona habitable.

    El agua en la Tierra

    Los océanos cubren el 71 % de la superficie terrestre: su agua salada supone el 96,5 % del agua del planeta.
    Artículo principal: Hidrología
    La Tierra se caracteriza por contener un alto porcentaje de su superficie cubierta por agua líquida, y el volumen total ocupa 1 400 000 000 km³. Este líquido se mantiene constante gracias al ciclo hídrico. Se piensa que el agua formaba parte de la composición de la tierra primigenia72​ y apareció en la superficie a partir de procesos de desgasificación del magma del interior de la tierra y de condensación del vapor de agua al enfriarse el planeta, aunque no se descartan aportes de agua por impactos con otros cuerpos solares.73​

    Distribución del agua en el manto terrestre

    Representación gráfica de la distribución de agua terrestre.4​

    El 70 % del agua dulce de la Tierra se encuentra en forma sólida (Glaciar Grey, Chile).
    El manto terrestre contiene una cantidad indeterminada de agua, que según las fuentes está entre el 35 % y el 85 % del total.74​ Se puede encontrar esta sustancia en prácticamente cualquier lugar de la biósfera y en los tres estados de agregación de la materia: sólido, líquido y gaseoso. El agua presente en cualquier estado por encima o por debajo de la superficie del planeta, incluida la subterránea, forma la hidrósfera, que está sometida a una dinámica compleja de transporte y cambio de estado que define un ciclo del agua.

    Los océanos y mares de agua salada cubren el 71 % de la superficie de la Tierra. Solo el 3 % del agua terrestre es dulce, y de este volumen, solo el 1 % está en estado líquido. El 2 % restante se encuentra en estado sólido en capas, campos y plataformas de hielo o banquisas en las latitudes próximas a los polos. Fuera de las regiones polares el agua dulce se encuentra principalmente en humedales y, subterráneamente, en acuíferos. Según un estudio publicado en la revista Nature Geoscience, se estima que el agua subterránea total en el planeta supone un volumen de 23 millones de kilómetros cúbicos.75​

    En total, la Tierra contiene unos 1 386 000 000 km³ de aguan. 3​ que se distribuyen de la siguiente forma:4​

    Distribución del agua en la hidrosfera
    Situación del agua Volumen en km³ Porcentaje
    Agua dulce Agua salada de agua dulce de agua total
    Océanos y mares - 1 338 000 000 - 96,5
    Casquetes y glaciares polares 24 064 000 - 68,7 1,74
    Agua subterránea salada - 12 870 000 - 0,94
    Agua subterránea dulce 10 530 000 - 30,1 0,76
    Glaciares continentales y permafrost 300 000 - 0,86 0,022
    Lagos de agua dulce 91 000 - 0,26 0,007
    Lagos de agua salada - 85 400 - 0,006
    Humedad del suelo 16 500 - 0,05 0,001
    Atmósfera 12 900 - 0,04 0,001
    Embalses 11 470 - 0,03 0,0008
    Ríos 2120 - 0,006 0,0002
    Agua biológica 1120 - 0,003 0,0001
    Total agua dulce 35 029 110 100 -
    Total agua en la tierra 1 386 000 000 - 100
    El agua desempeña un papel muy importante en los procesos geológicos. Las corrientes subterráneas de agua afectan directamente a las capas geológicas, influyendo en la formación de fallas. El agua localizada en el manto terrestre también afecta a la formación de volcanes.[cita requerida] En la superficie, el agua actúa como un agente muy activo sobre procesos químicos y físicos de erosión. El agua en su estado líquido y, en menor medida, en forma de hielo, también es un factor esencial en el transporte de sedimentos. El depósito de esos restos es una herramienta utilizada por la geología para estudiar los fenómenos formativos sucedidos en la Tierra.76​

    El ciclo del agua
    Artículo principal: Ciclo del agua

    El ciclo del agua implica una serie de procesos físicos continuos.
    Con ciclo del agua —conocido científicamente como el ciclo hidrológico— se denomina al continuo intercambio de agua dentro de la hidrósfera, entre la atmósfera, el agua superficial y subterránea y los organismos vivos.

    El agua cambia constantemente su posición de una a otra parte del ciclo de agua y se pueden distinguir numerosas componentes77​ que implican básicamente los siguientes procesos físicos:

    evaporación de los océanos y otras masas de agua y transpiración de los seres vivos (animales y plantas) hacia la atmósfera,
    precipitación, originada por la condensación de vapor de agua, y que puede adaptar múltiples formas,
    transporte del agua mediante escorrentía superficial o por flujos subterráneos tras la infiltración en el subsuelo.
    La energía del sol calienta el agua, generando la energía necesaria para romper los enlaces entre las moléculas de agua líquida que pasa así al estado gaseoso. El agua evaporada asciende hacia las capas superiores de la atmósfera donde se enfría hasta condensarse y formar nubes compuestas de gotas minúsculas. En ciertas condiciones, estas pequeñas partículas de agua se unen para formar gotas de mayor tamaño que no pueden mantenerse suspendidas por las corrientes de aire ascendentes y caen en forma de lluvia o granizo o nieve según la temperatura. Un 90 % del vapor de agua presente en la atmósfera procede de la evaporación de los océanos, a donde vuelve directamente la mayor parte; sin embargo, el viento desplaza un 10 % hacia la tierra firme, en la que el volumen de precipitaciones supera de este modo al de evaporación, proveniente principalmente de cuerpos acuáticos y la transpiración de los seres vivos, predominantemente de las plantas.77​

    Parte del agua que cae sobre la tierra como lluvia o proveniente del deshielo se filtra en la tierra o se evapora, pero alrededor de un tercio se desplaza por la superficie siguiendo la pendiente.77​ El agua de escorrentía suele formar cuencas, donde los cursos de agua más pequeños suelen unirse formando ríos. El desplazamiento constante de masas de agua sobre diferentes terrenos geológicos es un factor muy importante en la conformación del relieve. En las partes del curso con pendiente alta, los ríos arrastrar minerales durante su desplazamiento, que depositan en las partes bajas del curso. Por tanto, los ríos cumplen un papel muy importante en el enriquecimiento del suelo. Parte de las aguas de esos ríos se desvían para su aprovechamiento agrícola. Los ríos desembocan en el mar formando estuarios o deltas.78​ Las aguas subterráneas, por su parte, pueden aflorar a la superficie como manantiales o descender a acuíferos profundos, donde pueden permanecer milenios.77​

    El agua puede ocupar la tierra firme con consecuencias desastrosas: Las inundaciones se producen cuando una masa de agua rebasa sus márgenes habituales o cuando comunican con una masa mayor —como el mar— de forma irregular. Por otra parte, y aunque la falta de precipitaciones es un obstáculo importante para la vida, es natural que periódicamente algunas regiones sufran sequías. Cuando la sequedad no es transitoria, la vegetación desaparece, al tiempo que se acelera la erosión del terreno. Este proceso se denomina desertización79​ y muchos países adoptan políticas80​ para frenar su avance. En 2007, la ONU declaró el 17 de junio como el Día Mundial de Lucha contra la Desertización y la Sequía.81​

    El océano
    Artículo principal: Hidrografía

    Evaporación del agua del océano.
    El océano engloba la parte de la superficie terrestre ocupada por el agua marina. Existen varias teorías sobre su formación. Existen indicios de que proviene del agua presente en el interior del planeta, transportada a la superficie en forma de vapor de agua por los procesos volcánicos,82​ pero no se descarta que su origen esté en las colisiones con cuerpos ricos en agua durante la formación del sistema solar.83​ Durante las diferentes eras geológicas la distribución de las aguas oceánicas ha variado constantemente. Durante el Cenozoico alcanzaron su configuración actual los océanos Antártico, Ártico, Atlántico, Índico y Pacífico, así como los mares, cuerpos de agua salada de tamaño inferior.n. 4​

    Cubre el 71 % de la superficie de la Tierra y la profundidad media es de unos 4 km. En la fosa de las Marianas, alcanza los 11 033 m de profundidad.84​ En los océanos hay una capa superficial de agua a unos 17 °C de media, aunque la temperatura varía notablemente entre las zonas ecuatoriales y tropicales, donde puede llegar a los 36 °C y las zonas polares, donde baja hasta cerca de −2 °C, temperatura a la que se congela. La capa de agua superficial, cuyo espesor es normalmente de unos cuatrocientos o quinientos metros se mantiene a una temperatura casi constante, hasta alcanzar una zona, llamada termoclina, donde se da un rápido descenso de temperatura. Por debajo de esta zona límite, la temperatura desciende hasta los 3 y 0 °C.85​

    Los océanos contienen muchos elementos en disolución, aunque la mayoría se encuentran en concentraciones diminutas. Los más abundantes son el sodio y el cloro que, en su forma sólida, se combina para formar el cloruro de sodio o sal común que representa el 80 % de sales disueltas en el agua marina. A estos elementos les siguen por orden de abundancia el magnesio —4 %—, el azufre, principalmente en forma de sulfatos, el calcio, el potasio, el bromo, el estroncio, el boro y el flúor.86​

    Mareas
    Artículo principal: Marea

    Pleamar y bajamar en el puerto de la Flotte en la isla de Ré (Francia).
    Las mareas son movimientos cíclicos de las grandes masas de agua causadas por la fuerza gravitatoria lunar y el sol. Las mareas se deben a movimientos de corrientes de grandes masas de agua, que oscilan en un margen constante de horas. La marea se refleja perceptiblemente en una notable variación de la altura del nivel del mar —entre otras cosas— originado por las posiciones relativas del Sol y la Luna en combinación con el efecto de la rotación terrestre y la batimetría local.87​ La franja de mar sometida a estos cambios —expuesta en bajamar y cubierta en pleamar— se denomina zona intermareal y representa un nicho ecológico de gran valor.88​

    El agua dulce en la naturaleza
    Artículo principal: Agua dulce
    El agua dulce en la naturaleza se renueva gracias a la atmósfera que dispone de 13 900 km³ de vapor de agua, un 10 % del agua dulce del planeta, excluyendo las aguas subterráneas, el hielo en los casquetes polares y el permafrost. Se trata de un volumen dinámico que constantemente se está incrementando en forma de evaporación y disminuyendo en forma de precipitaciones, estimándose el volumen anual en forma de precipitación entre 113 500 y 120 000 km³ en el mundo. En los países de clima templado y frío la precipitación en forma de nieve supone una parte importante del total.89​

    El 68,7 % del agua dulce existente en el mundo está en los glaciares y mantos de hielo. Los presentes en la Antártida, Ártico y Groenlandia, a pesar de su extensión, no se consideran recursos hídricos por su inaccesibilidad. En cambio, los glaciares continentales son una parte importante de los recursos hídricos de muchos países.89​

    Las aguas superficiales engloban los lagos, embalses, ríos y humedales suponiendo solamente el 0,3 % del agua dulce del planeta, sin embargo, representan el 80 % de las aguas dulces renovables anualmente de allí su importancia.89​

    También el agua subterránea dulce almacenada, que representa el 96 % del agua dulce no congelada de la Tierra, supone un importante recurso. Según Morris los sistemas de aguas subterráneas empleados en abastecimiento de poblaciones suponen entre un 25 y un 40 % del agua potable total abastecida. Así la mitad de las grandes megalópolis del mundo dependen de ellas para su consumo. En las zonas donde no se dispone de otra fuente de abastecimiento representa una forma de abastecimiento de calidad a bajo coste.89​

    La mayor fuente de agua dulce del mundo adecuada para su consumo es el lago Baikal, de Siberia, que tiene un índice muy reducido en sal y calcio y aún no está contaminado.90​

    Efectos sobre la vida

    El arrecife de coral es uno de los entornos de mayor biodiversidad.
    El agua es la molécula más común en todos los seres vivos en la Tierra; la masa de la mayoría de los organismos contiene entre un setenta y noventa por ciento de agua, aunque el porcentaje varía considerablemente según la especie, la etapa de desarrollo del individuo y, en organismos multicelulares complejos, el tipo de tejido.91​ Las algas llegan al 98 % de agua en peso, mientras que los pinos contienen un 47 %. El cuerpo humano incluye entre un 65 % a un 75 % de agua en peso, y el porcentaje es menor a medida que la persona crece. El contenido en los tejidos varía entre el 99 % del líquido cefalorraquídeo y el 3 % de la dentina.92​93​

    El agua desempeña un papel biológico importante y todas las formas de vida conocidas dependen del agua a nivel molecular. Sus propiedades como disolvente posibilitan las diversas reacciones químicas de los compuestos orgánicos cruciales para todas las funciones vitales, el transporte de moléculas a través de las membranas y para disolver los productos de excreción.94​ También es un agente activo esencial en muchos de los procesos metabólicos de los seres vivos. La extracción de agua de moléculas —mediante reacciones químicas enzimáticas que consumen energía— permite la síntesis de macromoléculas complejas, como los triglicéridos o las proteínas; el agua actúa asimismo como agente catabólico sobre los enlaces entre átomos, reduciendo el tamaño de moléculas como glucosas, ácidos grasos y aminoácidos, y produciendo energía en el proceso. Es un compuesto esencial para la fotosíntesis. En este proceso, las células fotosintéticas utilizan la energía del sol para separar el oxígeno y el hidrógeno presentes en la molécula de agua; el hidrógeno se combina con CO2 —absorbido del aire o del agua— para formar glucosa, liberando oxígeno en el proceso.95​ El agua, por su carácter anfiprótico es también el eje de las funciones enzimáticas y la neutralidad respecto a ácidos y bases. La bioquímica en muchos medios intracelulares funciona de manera ideal alrededor de un valor pH de alrededor de 7,0 hasta 7,2.94​


    Vegetación de un oasis en el desierto.
    Vida acuática
    Artículos principales: Océanos de la biósfera, Planta acuática y Potencial hídrico.

    Diatomeas marinas, un importante grupo de fitoplancton.
    Las diversas teorías sobre el origen de la vida coinciden en que esta tuvo su origen en los océanos, bien en aguas superficiales gracias a la energía suministrada por la radiación solar, los rayos cósmicos y hasta descargas eléctricas procedentes de la atmósfera o bien en las profundidades marinas, junto a las fuentes hidrotermales de las fosas oceánicas,96​97​ Se calcula que un 25 % de todas las especies son acuáticas.98​ Las bacterias son particularmente abundantes en el agua y un estudio de 2006 contabilizó unas 20 000 especies por litro de agua marina.99​ Estos microorganismos, junto al fitoplancton son la base de la cadena trófica submarina, por lo que agua provee no solo el medio, sino el sustento de toda la fauna marina.100​

    Los animales acuáticos deben obtener oxígeno para respirar, extrayéndolo del agua de diversas maneras. Los vertebrados con respiración pulmonar, como los mamíferos, las aves, los reptiles y los anfibios en su fase adulta, toman el aire fuera del agua y contienen la respiración al sumergirse. La mayoría de la fauna acuática multicelular, sin embargo, utiliza branquias para extraer el oxígeno del agua. Algunas especies como los dipnoos cuentan con ambos sistemas respiratorios. Algunos organismos invertebrados carecen de un sistema respiratorio y absorben el oxígeno directamente del agua por difusión.101​

    Efectos sobre la civilización humana

    Una niña bebiendo agua embotellada.
    La historia muestra que las primeras civilizaciones florecieron en zonas favorables a la agricultura, como las cuencas de los ríos. Es el caso de Mesopotamia, considerada la cuna de la civilización humana, surgida en el fértil valle del Éufrates y el Tigris; y también el de Egipto, que dependía por completo del Nilo y sus periódicas crecidas. Muchas otras grandes ciudades, como Róterdam, Londres, Montreal, París, Nueva York, Buenos Aires, Shanghái, Tokio, Chicago y Hong Kong deben su riqueza a la conexión con alguna gran vía de agua que favoreció su crecimiento y su prosperidad. Las islas que contaban con un puerto natural seguro —como Singapur— florecieron por la misma razón. Del mismo modo, las áreas en las que el agua es muy escasa tienen dificultades de desarrollo, a no ser que posean otros recursos en grandes cantidades.102​

    El agua como derecho humano
    Artículo principal: Derecho al agua y al saneamiento

    Agua cayendo.
    La Asamblea General de las Naciones Unidas, aprobó el 28 de julio de 2010, en su sexagésimo cuarto período de sesiones, una resolución que reconoce al agua potable y al saneamiento básico como derecho humano esencial para el pleno disfrute de la vida y de todos los derechos humanos.103​n. 5​ Esta resolución fue precedida, en noviembre de 2002, por la «Observación General nº 15 sobre el derecho al agua», que establece el derecho al acceso asequible al agua como una condición indispensable para «una vida humana digna». El artículo I.1 establece que "El derecho humano al agua es indispensable para una vida humana digna".103​

    En la resolución de la Asamblea General de 2010, se estimaba en 884 millones el número de personas sin acceso al agua potable, y en más de 2 600 000 000 las personas sin saneamiento básico. Asimismo, calculaba que unos 1,5 millones de niños menores de 5 años fallecían anualmente como consecuencia de la carencia de agua.

    Agua para beber: necesidad del cuerpo humano
    Artículo principal: Agua potable
    El cuerpo humano está compuesto de entre un 55 % y un 78 % de agua, dependiendo de sus medidas y complexión.104​ La actividad metabólica, como por ejemplo, la oxidación de las grasas o hidratos de carbono, genera cierta cantidad de agua; sin embargo, el agua metabólica es insuficiente para compensar las pérdidas a través de la orina, las heces, el sudor, o por exhalación del aliento, por lo que para mantener el balance hídrico del cuerpo es necesario consumir agua. El agua se puede absorber tanto de las bebidas líquidas o de los alimentos, entre los cuales las frutas y verduras frescas contienen el porcentaje mayor, hasta un 85 %, similar al de muchas bebidas, mientras que los cereales o frutos secos suelen componerse solo de un 5 % de agua.105​

    El agua también es útil para lubricar las articulaciones, facilitar el proceso de digestión y mantener los órganos en función y en buen estado.106​

    Para evitar problemas asociados a la deshidratación, un documento de la Plataforma de Alimentación y Nutrición del Consejo Nacional de Investigación de los Estados Unidos recomendaba en 1945 consumir un mililitro de agua por cada caloría de comida.107​ La última referencia ofrecida por este mismo organismo habla de 2,7 litros de agua diarios para una mujer y 3,7 litros para un hombre, incluyendo el consumo de agua a través de los alimentos.108​ Naturalmente, durante el embarazo y la lactancia la mujer debe consumir más agua para mantenerse hidratada. Según el Instituto de Medicina —que recomienda una media de 2,2 litros/día para una mujer, y 3,0 litros/día para un varón— una mujer embarazada debe consumir 2,4 litros, y hasta 3 litros durante la lactancia, considerada la gran cantidad de líquido que se pierde durante este periodo.109​ la Asociación Británica de Dietética recomienda un mínimo de unos dos litros y medio diarios de agua.110​ Otras fuentes discrepan,111​ y la literatura médica cita una cantidad mínima menor, típicamente un litro de agua diario para un individuo varón adulto.112​ En cualquier caso, cantidad exacta variará en función del nivel de actividad, la temperatura, la humedad, la dieta y otros factores.

    La ingesta excesiva de agua —por ejemplo, durante el ejercicio físico— puede causar hiperhidratación, o intoxicación de agua, una condición que puede ser peligrosa. Hay varios mitos no demostrados sobre el consumo de agua y la salud, como por ejemplo usa supuesta relación entre el consumo de agua, la pérdida de peso y el estreñimiento.113​

    A diferencia de las pérdidas de agua a través de la piel o los pulmones, el volumen excretado con la orina está sujeto a un estricto control, llevado a cabo en los riñones. El porcentaje de agua presente en la orina puede variar mucho, dependiendo de la cantidad de sustancias de desecho, como minerales y urea, a excretar. La concentración u osmolaridad máxima de estos solutos en de la orina es de 1200 mOsm/L, que define el volumen mínimo de líquido necesario para su eliminación, independientemente del estado de hidratación del organismo.105​

    Desinfección del agua potable
    Artículo principal: Desinfección del agua potable
    Distribución del agua en la Tierra.PNG

    Una niña con una botella de agua en África donde la diarrea es frecuente en los niños. La escasez de agua y la deficiente infraestructura causan más de cinco millones de muertes al año por consumo de agua contaminada.
    El agua de beber es uno de los principales transmisores de microorganismos causantes de enfermedades, principalmente bacterias, virus y protozoos intestinales. Las grandes epidemias de la humanidad han prosperado por la contaminación del agua. Por referencias, se conoce que se recomendaba hervir el agua desde quinientos años antes de nuestra era.114​

    Actualmente en los países desarrollados están prácticamente controlados los problemas que planteaban las aguas contaminadas. Los procesos de filtración y desinfección del agua previamente al consumo humano se impusieron en el siglo XX y se estima que son los causantes del 50 % de aumento de la expectativa de vida de los países desarrollados en el siglo pasado. La revista Life consideró la cloración y filtración del agua como probablemente el más importante progreso de la salud pública del milenio. Existen varios agentes que se pueden emplear para la desinfección del agua, entre ellos el peróxido, compuestos de cloro y otros halógenos, plata-cobre, ozono y radiación ultravioleta.115​

    18 de Noviembre de 2022 15:40
  3. miki ._.
    Para otros usos de este término, véase Agua (desambiguación).

    El agua en la naturaleza se encuentra en sus tres estados: líquido fundamentalmente en los océanos, sólido (hielo en los glaciares, icebergs y casquetes polares), así como nieve (en las zonas frías) y vapor (invisible) en el aire.

    El ciclo hidrológico: el agua circula constantemente por el planeta en un ciclo continuo de evaporación, transpiración, precipitaciones y desplazamiento hacia el mar.

    El agua es un elemento esencial para mantener nuestras vidas. El acceso al agua potable reduce la expansión de numerosas enfermedades infecciosas. Necesidades vitales humanas, como el abastecimiento de alimentos, dependen de ella. Los recursos energéticos y las actividades industriales que necesitamos también dependen del agua.1​
    El agua (del latín aqua) es una sustancia cuya molécula está compuesta por dos átomos de hidrógeno y uno de oxígeno (H2O) unidos por un enlace covalente.2​ El término agua, generalmente, se refiere a la sustancia en su estado líquido, aunque esta puede hallarse en su forma sólida, llamada hielo, y en su forma gaseosa, denominada vapor.2​ Es una sustancia bastante común en la Tierra y el sistema solar, donde se encuentra principalmente en forma de vapor o de hielo. Es indispensable para el origen y sustento de la vida.

    El agua cubre el 71 % de la superficie de la corteza terrestre.3​ Se localiza principalmente en los océanos, donde se concentra el 96,5 % del total. A los glaciares y casquetes polares les corresponde el 1,74 %, mientras que los depósitos subterráneos (acuíferos), los permafrost y los glaciares continentales concentran el 1,72 %. El restante 0,04 % es el agua dulce disponible en el planeta, de la cual depende la vida en el mismo, que se reparte en orden decreciente entre lagos, humedad del suelo, atmósfera, embalses, ríos y seres vivos.4​ La vida en la tierra está directamente relacionada al agua. Las personas están compuestas de agua corporal que varía del 45 al 73%.

    El agua circula constantemente en un ciclo de evaporación o transpiración (evapotranspiración), precipitación y desplazamiento hacia el mar. Los vientos la transportan en las nubes, como vapor de agua, desde el mar, y en sentido inverso tanta agua como la que se vierte desde los ríos en los mares, en una cantidad aproximada de 45 000 km³ al año. En tierra firme, la evaporación y transpiración contribuyen con 74 000 km³ anuales, por lo que las precipitaciones totales son de 119 000 km³ cada año.5​

    Se estima que aproximadamente el 70 % del agua dulce se destina a la agricultura.6​ El agua en la industria absorbe una media del 20 % del consumo mundial, empleándose en tareas de refrigeración, transporte y como disolvente en una gran variedad de procesos industriales. El consumo doméstico absorbe el 10 % resta nte.7​ El acceso al agua potable se ha incrementado durante las últimas décadas en prácticamente todos los países.8​9​ Sin embargo, estudios de la FAO estiman que uno de cada cinco países en vías de desarrollo tendrá problemas de escasez de agua antes de 2030; en esos países es vital un menor gasto de agua en la agricultura, modernizando los sistemas de riego.7​


    Índice
    1 Propiedades físicas y químicas
    1.1 Estados
    1.2 Sabor, olor y aspecto
    1.3 Propiedades moleculares
    1.4 Propiedades eléctricas y magnéticas
    1.5 Propiedades mecánicas
    1.6 Reacciones químicas
    2 Distribución del agua en la naturaleza
    2.1 El agua en el Universo
    2.2 El agua en el sistema solar
    2.3 El agua y la zona habitable
    3 El agua en la Tierra
    3.1 Distribución del agua en el manto terrestre
    3.2 El ciclo del agua
    3.3 El océano
    3.3.1 Mareas
    3.4 El agua dulce en la naturaleza
    4 Efectos sobre la vida
    4.1 Vida acuática
    5 Efectos sobre la civilización humana
    5.1 El agua como derecho humano
    5.2 Agua para beber: necesidad del cuerpo humano
    5.2.1 Desinfección del agua potable
    5.2.2 Dificultades en el mundo para acceder al agua potable
    5.3 El uso doméstico del agua
    5.3.1 Recomendaciones para el cuidado del agua en el hogar
    5.4 El agua en la agricultura
    5.5 El uso del agua en la industria
    5.5.1 El agua como transmisor de calor
    5.5.2 Procesamiento de alimentos
    5.5.3 Aplicaciones químicas
    5.6 El agua empleada como disolvente
    5.7 Otros usos
    5.7.1 El agua como extintor de fuego
    5.7.2 Deportes y diversión
    5.7.3 Como estándar científico
    5.8 La contaminación y la depuración del agua
    5.8.1 La depuración del agua para beber
    5.8.2 La depuración del agua residual
    6 Necesidad de políticas de protección
    7 Religión, filosofía y literatura
    8 Notas
    9 Referencias
    10 Bibliografía
    11 Enlaces externos
    Propiedades físicas y químicas
    Artículo principal: Molécula de agua

    La geometría de la molécula de agua es la causante de una buena parte de sus propiedades, por su elevada constante dieléctrica y actuar como dipolo.

    Copo de nieve visto a través de un microscopio. Está coloreado artificialmente.
    El agua es una sustancia que químicamente se formula como H2O, es decir, que una molécula de agua se compone de dos átomos de hidrógeno enlazados covalentemente a un átomo de oxígeno.

    Fue Henry Cavendish quien descubrió en 1782 que el agua es una sustancia compuesta y no un elemento, como se pensaba desde la antigüedad.n. 1​ Los resultados de dicho descubrimiento fueron desarrollados por Antoine Laurent de Lavoisier, dando a conocer que el agua está formada por oxígeno e hidrógeno.10​11​ En 1804, el químico francés Louis Joseph Gay-Lussac y el naturalista y geógrafo alemán Alexander von Humboldt demostraron que el agua estaba formada por dos volúmenes de hidrógeno por cada volumen de oxígeno (H2O).11​

    Actualmente se sigue investigando sobre la naturaleza de este compuesto y sus propiedades, a veces traspasando los límites de la ciencia convencional.n. 2​ En este sentido, el investigador John Emsley, divulgador científico, dijo del agua que «(Es) una de las sustancias químicas más investigadas, pero sigue siendo la menos entendida».12​

    Estados

    Diagrama de fases del agua.

    Animación de cómo el hielo pasa a estado líquido en un vaso. Los 50 minutos transcurridos se concentran en 4 segundos.
    El agua es un líquido en el rango de temperaturas y presiones más adecuado para las formas de vida conocidas: a la presión de 1 atm, el agua es líquida entre las temperaturas de 273,15 K (0 °C) y 373,15 K (100 °C). Los valores para el calor latente de fusión y de vaporización son de 0,334 kJ/g y 2,23 kJ/g respectivamente.13​

    Al aumentar la presión, disminuye ligeramente el punto de fusión, que es de aproximadamente −5 °C a 600 atm y −22 °C a 2100 atm. Este efecto es el causante de la formación de los lagos subglaciales de la Antártida y contribuye al movimiento de los glaciares.14​15​ A presiones superiores a 2100 atm el punto de fusión vuelve a aumentar rápidamente y el hielo presenta configuraciones exóticas que no existen a presiones más bajas.

    Las diferencias de presión tienen un efecto más dramático en el punto de ebullición, que es aproximadamente 374 °C a 220 atm, mientras que en la cima del Monte Everest, donde la presión atmosférica es de alrededor de 0,34 atm, el agua hierve a unos 70 °C. El aumento del punto de ebullición con la presión se puede presenciar en las fuentes hidrotermales de aguas profundas, y tiene aplicaciones prácticas, como las ollas a presión y motores de vapor.16​La temperatura crítica, por encima de la cual el vapor no puede licuarse al aumentar la presión es de 373,85 °C (647,14 K).13​

    A presiones por debajo de 0,006 atm, el agua no puede existir en el estado líquido y pasa directamente del sólido al gas por sublimación, fenómeno explotado en la liofilización de alimentos y compuestos.17​ A presiones por encima de 221 atm, los estados de líquido y de gas ya no son distinguibles, un estado llamado agua supercrítica. En este estado, el agua se utiliza para catalizar ciertas reacciones y tratar residuos orgánicos.

    La densidad del agua líquida es muy estable y varía poco con los cambios de temperatura y presión. A la presión de una atmósfera, la densidad mínima del agua líquida es de 0,958 kg/l, a los 100 °C. Al bajar la temperatura, aumenta la densidad constantemente hasta llegar a los 3,8 °C donde alcanza una densidad máxima de 1 kg/l. A temperaturas más bajas, a diferencia de otras sustancias, la densidad disminuye.18​ A los 0 °C, el valor es de 0,9999 kg/l; al congelarse, la densidad experimenta un descenso más brusco hasta 0,917 kg/l, acompañado por un incremento del 9 % en volumen, lo que explica el hecho de que el hielo flote sobre el agua líquida.

    Sabor, olor y aspecto
    Artículo principal: Color del agua
    El agua como tal no tiene olor, ni color ni sabor, sin embargo, el agua en la Tierra contiene minerales y sustancias orgánicas en disolución que le pueden aportar sabores y olores más o menos detectables según la concentración de los compuestos y la temperatura del agua.19​El agua puede tener un aspecto turbio si contiene partículas en suspensión.20​ La materia orgánica presente en el suelo, como los ácidos húmicos y fúlvicos, también imparte color, así como la presencia de metales, como el hierro.19​ En la ausencia de contaminantes, el agua líquida, sólida o gaseosa apenas absorbe la luz visible, aunque en el espectrógrafo se prueba que el agua líquida tiene un ligero tono azul verdoso. El hielo también tiende al azul turquesa. El color que presentan las grandes superficies de agua es en parte debido a su color intrínseco, y en parte al reflejo del cielo.21​ Por el contrario, el agua absorbe fuertemente la luz en el resto del espectro, procurando protección frente a la radiación ultravioleta.22​

    Propiedades moleculares

    Cada molécula de agua se compone de dos átomos de hidrógeno unidos por enlaces covalentes a un átomo de oxígeno. A su vez las distintas moléculas de agua se unen por unos enlaces por puentes de hidrógeno. Estos enlaces por puentes de hidrógeno entre las moléculas del agua son responsables de la dilatación térmica del agua al solidificarse, es decir, de su aumento de volumen al congelarse.

    El impacto de una gota sobre la superficie del agua provoca unas ondas características, llamadas ondas capilares.

    Acción capilar del agua y el mercurio, que produce la variación en la altura de las columnas de cada líquido y forma diferentes meniscos en el contacto con las paredes del recipiente.

    Estas gotas se forman por la elevada tensión superficial del agua.
    La molécula de agua adopta una geometría no lineal, con los dos átomos de hidrógeno formando un ángulo de 104,45 grados entre sí. Esta configuración, junto con la mayor electronegatividad del átomo de oxígeno, le confieren polaridad a la molécula, cuyo momento dipolar eléctrico es de 6,2 × 10−30 C m.23​

    La polaridad de la molécula de agua da lugar a fuerzas de Van der Waals y la formación de hasta cuatro enlaces de hidrógeno con moléculas circundantes.24​ Estos enlaces moleculares explican la adhesividad del agua, su elevado índice de tensión superficial y su capilaridad, que es responsable de la formación de ondas capilares, permite a algunos animales desplazarse sobre la superficie del agua y contribuye al transporte de la savia contra la gravedad en las plantas vasculares, como los árboles.25​26​ La presencia en el agua de ciertas sustancias surfactantes, como jabones y detergentes, reduce notablemente la tensión superficial del agua y facilita la retirada de la suciedad adherida a objetos.18​

    Los puentes de hidrógeno entre las moléculas de agua también son responsables de los elevados puntos de fusión y ebullición comparados con los de otros compuestos de anfígeno e hidrógeno, como el sulfuro de hidrógeno. Asimismo, explican los altos valores de la capacidad calorífica —4,2 J/g/K, valor solo superado por el amoníaco—, el calor latente y la conductividad térmica —entre 0,561 y 0,679 W/m/K—. Estas propiedades le dan al agua un papel importante en la regulación del clima de la Tierra, mediante el almacenamiento del calor y su transporte entre la atmósfera y los océanos.27​28​

    Otra consecuencia de la polaridad del agua es que, en estado líquido, es un disolvente muy potente de muchos tipos de sustancias distintas. Las sustancias que se mezclan y se disuelven bien en agua —como las sales, azúcares, ácidos, álcalis y algunos gases (como el oxígeno o el dióxido de carbono, mediante carbonación)— son llamadas hidrófilas, mientras que las que no combinan bien con el agua —como lípidos y grasas— se denominan sustancias hidrófobas. Igualmente, el agua es miscible con muchos líquidos, como el etanol, y en cualquier proporción, formando un líquido homogéneo. Puede formar azeótropos con otros disolventes, como el etanol o el tolueno.29​ Por otra parte, los aceites son inmiscibles con el agua, y forman capas de variable densidad sobre su superficie. Como cualquier gas, el vapor de agua es miscible completamente con el aire.

    Propiedades eléctricas y magnéticas
    El agua tiene una constante dieléctrica relativamente elevada (78,5 a 298 K o 25 °C) y las moléculas de sustancias con carga eléctrica se disocian fácilmente en ella.30​ La presencia de iones disociados incrementa notablemente la conductividad del agua que, por el contrario, se comporta como un aislante eléctrico en estado puro.31​

    El agua puede disociarse espontáneamente en iones hidronios H3O+ e hidróxidos OH-. La constante de disociación Kw es muy baja —10−14 a 25 °C—, lo que implica que una molécula de agua se disocia aproximadamente cada diez horas.32​ El pH del agua pura es 7, porque los iones hidronios e hidróxidos se encuentran en la misma concentración. Debido a los bajos niveles de estos iones, el pH del agua varía bruscamente si se disuelven en ella ácidos o bases.

    Es posible separar el agua líquida en sus dos componentes hidrógeno y oxígeno haciendo pasar por ella una corriente eléctrica, mediante electrólisis. La energía requerida para separar el agua en sus dos componentes mediante este proceso es superior a la energía desprendida por la recombinación de hidrógeno y oxígeno.33​

    El agua líquida pura es un material diamagnético y es repelida por campos magnéticos muy intensos.34​

    Propiedades mecánicas
    El agua líquida puede considerarse a efectos prácticos como incompresible, efecto que es aprovechado en las prensas hidráulicas;35​ en condiciones normales, su compresibilidad abarca valores desde 4,4 hasta 5,1 × 10−10 Pa−1.36​ Incluso a profundidades de 2 km, donde la presión alcanza unas 200 atm, el agua experimenta una disminución de volumen de solo un 1 %.37​

    La viscosidad del agua es de unos 10−3 Pa·s o 0,01 poise a 20 °C, y la velocidad del sonido en agua líquida varía entre los 1400 y 1540 m/s, dependiendo de la temperatura. El sonido se trasmite en el agua casi sin atenuación, sobre todo a frecuencias bajas; esta propiedad permite la comunicación submarina a largas distancias entre los cetáceos y es la base de la técnica del sonar para detectar objetos bajo el agua.38​

    Reacciones químicas
    El agua es el producto final de reacciones de combustión, ya sea del hidrógeno o de un compuesto que contenga hidrógeno. El agua también se forma en reacciones de neutralización entre ácidos y bases.39​

    El agua reacciona con muchos óxidos metálicos y no metálicos para formar hidróxidos y oxácidos respectivamente. También forma hidróxidos al reaccionar directamente con los elementos con mayor electropositividad, como los metales alcalinos y alcalinotérreos, que desplazan el hidrógeno del agua en una reacción que, en el caso de los alcalinos más pesados, puede llegar a ser explosiva debido al contacto del hidrógeno liberado con el oxígeno del aire.39​40​

    A causa de su capacidad de autoinozación, el agua puede hidrolizar otras moléculas.41​ Las reacciones de hidrólisis pueden producirse tanto con compuestos orgánicos como inorgánicos. Son muy importantes en el metabolismo de los seres vivos, que sintetizan numerosas enzimas denominadas hidrolasas con la función de catalizar la hidrólisis de diferentes moléculas.

    Distribución del agua en la naturaleza
    El agua en el Universo

    Superficie cubierta de hielo de Europa, un satélite de Júpiter. Se piensa que existe un océano de agua líquida bajo su superficie helada.
    El agua es un compuesto bastante común en nuestro sistema solar,42​ y en el universo,42​43​ donde se encuentra principalmente en forma de hielo y de vapor. Constituye una gran parte del material que compone los cometas y en 2016 se ha hallado «agua magmática» proveniente del interior de la Luna en pequeños granos minerales en la superficie lunar.44​ Algunos satélites de Júpiter y de Saturno, como Europa y Encélado, presentan posiblemente agua líquida bajo su gruesa capa de hielo.42​ Esto permitiría a estas lunas tener una especie de tectónica de placas donde el agua líquida cumple el rol del magma en la tierra, mientras que el hielo sería el equivalente a la corteza terrestre.[cita requerida]

    La mayor parte del agua que existe en el universo puede haber surgido como derivado de la formación de estrellas que posteriormente produjeron el vapor de agua al explotar. El nacimiento de las estrellas suele causar un fuerte flujo de gases y polvo cósmico. Cuando este material colisiona con el gas de las zonas exteriores, las ondas de choque producidas comprimen y calientan el gas. Se piensa que el agua es producida en este gas cálido y denso.45​

    Se ha detectado agua en nubes interestelares dentro de nuestra galaxia, la Vía Láctea. Estas nubes interestelares pueden condensarse eventualmente en forma de una nebulosa solar. Además, se piensa que el agua puede ser abundante en otras galaxias, dado que sus componentes (hidrógeno y oxígeno) están entre los más comunes del universo.46​ En la primera década del siglo XXI se encontró agua en exoplanetas, como HD 189733 b47​48​ y HD 209458 b.49​

    En julio de 2011, la revista Astrophysical Journal Letters publicó el hallazgo por un grupo de astrónomos del Laboratorio de Propulsión a Reacción (JPL) de la NASA y del Instituto de Tecnología de California (CALTECH) de una nube de vapor de agua que rodea el cuásar APM 08279+5255, que supone la mayor reserva de agua en el Universo descubierta hasta la fecha, unas 140 billones de veces más que en la tierra.50​

    El agua en el sistema solar

    Gotas de rocío suspendidas de una telaraña.
    Se ha detectado vapor de agua en la atmósfera de varios planetas, satélites y otros cuerpos del sistema solar, además de en el Sol mismo. A continuación se listan varios ejemplos:

    Mercurio: Se ha detectado en altas proporciones en la exosfera.51​
    Venus: 0,002 % en la atmósfera.52​53​
    Tierra: cantidades reducidas en la atmósfera, sujetas a variaciones climáticas.
    Marte: Cantidades variables dependiendo del lugar y la estación del año.54​
    Júpiter: 0,0004 % en la atmósfera.[cita requerida]
    Encélado (luna de Saturno): 91 % de su atmósfera.55​
    El agua en su estado líquido abunda en la Tierra, donde cubre el 71 % de la superficie. En 2015 la NASA confirmó la presencia de agua líquida en la superficie de Marte.56​

    Existen indicios de que la luna de Saturno Encélado cuenta con un océano líquido de 10 km de profundidad a unos 30-40 km debajo del polo sur del satélite;57​58​ también se cree que en Titán puede haber una capa de agua y amoníaco por debajo de la superficie,59​ y la superficie del satélite Europa de Júpiter presenta rasgos que sugieren la existencia de un océano de agua líquida en su interior.60​61​ En Ganimedes, otra luna de Júpiter, también podría haber agua líquida entre sendas capas de hielo a alta presión y de roca.62​ En 2015, la sonda espacial New Horizons halló indicios de agua en el interior de Plutón.63​

    Con respecto al hielo, existe en la Tierra, sobre todo en las zonas polares y glaciares; en los casquetes polares de Marte, también se encuentra agua en estado sólido, aunque están compuestos principalmente de hielo seco. Es probable que el hielo forme parte de la estructura interna de planetas como Urano, Saturno y Neptuno. El hielo forma una espesa capa en la superficie de algunos satélites, como Europa y en Titán, donde puede alcanzar los 50 km de grosor.64​

    También existe hielo en el material que forma los anillos de Saturno,65​ en los cometas66​ y objetos de procedencia meteórica, llegados por ejemplo desde el Cinturón de Kuiper o la Nube de Oort. Se ha hallado hielo en la Luna, y en planetas enanos como Ceres y Plutón.67​63​

    El agua y la zona habitable
    Artículo principal: Zona de habitabilidad
    La existencia de agua en estado líquido es necesaria para los seres vivos terrestres y su presencia se considera un factor importante en el origen y la evolución de la vida en el planeta.68​69​ La Tierra está situada en un área del sistema solar que reúne condiciones muy específicas, pero si estuviese un 5 % —ocho millones de kilómetros— más cerca o más lejos del Sol no podría albergar agua en estado líquido, solo vapor de agua o hielo.68​70​

    La masa de la Tierra también tiene un papel importante en el estado del agua en la superficie: la fuerza de la gravedad impide que los gases de la atmósfera se dispersen. El vapor de agua y el dióxido de carbono se combinan, causando lo que se conoce como el efecto invernadero, que mantiene la estabilidad de las temperaturas, actuando como una capa protectora de la vida en el planeta. Si la Tierra fuese más pequeña, la menor gravedad ejercida sobre la atmósfera haría que esta fuese menos espesa, lo que redundaría en temperaturas extremas e impediría la acumulación de agua excepto en los casquetes polares, tal como ocurre en Marte. Por otro lado, si la masa de la Tierra fuese mucho mayor, el agua permanecería en estado sólido incluso a altas temperaturas, dada la elevada presión causada por la gravedad.71​ Por lo tanto, tanto el tamaño de un planeta como la distancia a la estrella son factores en la extensión de la zona habitable.

    El agua en la Tierra

    Los océanos cubren el 71 % de la superficie terrestre: su agua salada supone el 96,5 % del agua del planeta.
    Artículo principal: Hidrología
    La Tierra se caracteriza por contener un alto porcentaje de su superficie cubierta por agua líquida, y el volumen total ocupa 1 400 000 000 km³. Este líquido se mantiene constante gracias al ciclo hídrico. Se piensa que el agua formaba parte de la composición de la tierra primigenia72​ y apareció en la superficie a partir de procesos de desgasificación del magma del interior de la tierra y de condensación del vapor de agua al enfriarse el planeta, aunque no se descartan aportes de agua por impactos con otros cuerpos solares.73​

    Distribución del agua en el manto terrestre

    Representación gráfica de la distribución de agua terrestre.4​

    El 70 % del agua dulce de la Tierra se encuentra en forma sólida (Glaciar Grey, Chile).
    El manto terrestre contiene una cantidad indeterminada de agua, que según las fuentes está entre el 35 % y el 85 % del total.74​ Se puede encontrar esta sustancia en prácticamente cualquier lugar de la biósfera y en los tres estados de agregación de la materia: sólido, líquido y gaseoso. El agua presente en cualquier estado por encima o por debajo de la superficie del planeta, incluida la subterránea, forma la hidrósfera, que está sometida a una dinámica compleja de transporte y cambio de estado que define un ciclo del agua.

    Los océanos y mares de agua salada cubren el 71 % de la superficie de la Tierra. Solo el 3 % del agua terrestre es dulce, y de este volumen, solo el 1 % está en estado líquido. El 2 % restante se encuentra en estado sólido en capas, campos y plataformas de hielo o banquisas en las latitudes próximas a los polos. Fuera de las regiones polares el agua dulce se encuentra principalmente en humedales y, subterráneamente, en acuíferos. Según un estudio publicado en la revista Nature Geoscience, se estima que el agua subterránea total en el planeta supone un volumen de 23 millones de kilómetros cúbicos.75​

    En total, la Tierra contiene unos 1 386 000 000 km³ de aguan. 3​ que se distribuyen de la siguiente forma:4​

    Distribución del agua en la hidrosfera
    Situación del agua Volumen en km³ Porcentaje
    Agua dulce Agua salada de agua dulce de agua total
    Océanos y mares - 1 338 000 000 - 96,5
    Casquetes y glaciares polares 24 064 000 - 68,7 1,74
    Agua subterránea salada - 12 870 000 - 0,94
    Agua subterránea dulce 10 530 000 - 30,1 0,76
    Glaciares continentales y permafrost 300 000 - 0,86 0,022
    Lagos de agua dulce 91 000 - 0,26 0,007
    Lagos de agua salada - 85 400 - 0,006
    Humedad del suelo 16 500 - 0,05 0,001
    Atmósfera 12 900 - 0,04 0,001
    Embalses 11 470 - 0,03 0,0008
    Ríos 2120 - 0,006 0,0002
    Agua biológica 1120 - 0,003 0,0001
    Total agua dulce 35 029 110 100 -
    Total agua en la tierra 1 386 000 000 - 100
    El agua desempeña un papel muy importante en los procesos geológicos. Las corrientes subterráneas de agua afectan directamente a las capas geológicas, influyendo en la formación de fallas. El agua localizada en el manto terrestre también afecta a la formación de volcanes.[cita requerida] En la superficie, el agua actúa como un agente muy activo sobre procesos químicos y físicos de erosión. El agua en su estado líquido y, en menor medida, en forma de hielo, también es un factor esencial en el transporte de sedimentos. El depósito de esos restos es una herramienta utilizada por la geología para estudiar los fenómenos formativos sucedidos en la Tierra.76​

    El ciclo del agua
    Artículo principal: Ciclo del agua

    El ciclo del agua implica una serie de procesos físicos continuos.
    Con ciclo del agua —conocido científicamente como el ciclo hidrológico— se denomina al continuo intercambio de agua dentro de la hidrósfera, entre la atmósfera, el agua superficial y subterránea y los organismos vivos.

    El agua cambia constantemente su posición de una a otra parte del ciclo de agua y se pueden distinguir numerosas componentes77​ que implican básicamente los siguientes procesos físicos:

    evaporación de los océanos y otras masas de agua y transpiración de los seres vivos (animales y plantas) hacia la atmósfera,
    precipitación, originada por la condensación de vapor de agua, y que puede adaptar múltiples formas,
    transporte del agua mediante escorrentía superficial o por flujos subterráneos tras la infiltración en el subsuelo.
    La energía del sol calienta el agua, generando la energía necesaria para romper los enlaces entre las moléculas de agua líquida que pasa así al estado gaseoso. El agua evaporada asciende hacia las capas superiores de la atmósfera donde se enfría hasta condensarse y formar nubes compuestas de gotas minúsculas. En ciertas condiciones, estas pequeñas partículas de agua se unen para formar gotas de mayor tamaño que no pueden mantenerse suspendidas por las corrientes de aire ascendentes y caen en forma de lluvia o granizo o nieve según la temperatura. Un 90 % del vapor de agua presente en la atmósfera procede de la evaporación de los océanos, a donde vuelve directamente la mayor parte; sin embargo, el viento desplaza un 10 % hacia la tierra firme, en la que el volumen de precipitaciones supera de este modo al de evaporación, proveniente principalmente de cuerpos acuáticos y la transpiración de los seres vivos, predominantemente de las plantas.77​

    Parte del agua que cae sobre la tierra como lluvia o proveniente del deshielo se filtra en la tierra o se evapora, pero alrededor de un tercio se desplaza por la superficie siguiendo la pendiente.77​ El agua de escorrentía suele formar cuencas, donde los cursos de agua más pequeños suelen unirse formando ríos. El desplazamiento constante de masas de agua sobre diferentes terrenos geológicos es un factor muy importante en la conformación del relieve. En las partes del curso con pendiente alta, los ríos arrastrar minerales durante su desplazamiento, que depositan en las partes bajas del curso. Por tanto, los ríos cumplen un papel muy importante en el enriquecimiento del suelo. Parte de las aguas de esos ríos se desvían para su aprovechamiento agrícola. Los ríos desembocan en el mar formando estuarios o deltas.78​ Las aguas subterráneas, por su parte, pueden aflorar a la superficie como manantiales o descender a acuíferos profundos, donde pueden permanecer milenios.77​

    El agua puede ocupar la tierra firme con consecuencias desastrosas: Las inundaciones se producen cuando una masa de agua rebasa sus márgenes habituales o cuando comunican con una masa mayor —como el mar— de forma irregular. Por otra parte, y aunque la falta de precipitaciones es un obstáculo importante para la vida, es natural que periódicamente algunas regiones sufran sequías. Cuando la sequedad no es transitoria, la vegetación desaparece, al tiempo que se acelera la erosión del terreno. Este proceso se denomina desertización79​ y muchos países adoptan políticas80​ para frenar su avance. En 2007, la ONU declaró el 17 de junio como el Día Mundial de Lucha contra la Desertización y la Sequía.81​

    El océano
    18 de Noviembre de 2022 15:39
  4. Ugaitz Alonso Blanco
    aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
    18 de Noviembre de 2022 15:37
  5. Ugaitz Alonso Blanco
    super sayayin
    18 de Noviembre de 2022 15:36
  6. ALBERTO BARRIO MARTINEZ
    hello
    22 de Noviembre de 2021 14:03
  7. Aitor Pérez Guerrero
    Muy épico
    8 de Febrero de 2021 07:53
  8. Franete Pro
    Tu Mi mi tu sus mi su
    6 de Febrero de 2021 12:59
  1. tiempo
    puntuacion
  1. tiempo
    puntuacion
tiempo
puntuacion
tiempo
puntuacion