Icon Crear Crear

Plurals in context [ING I - INF]

Completar frases

(5)
Complete the sentences with the correct option.

Descarga la versión para jugar en papel

78 veces realizada

Creada por

México

Top 10 resultados

  1. 1
    Gomez Trejo Ezequiel
    Gomez Trejo Ezequiel
    02:34
    tiempo
    96
    puntuacion
  2. 2
    03:46
    tiempo
    96
    puntuacion
  3. 3
    Diego Reyes G.
    Diego Reyes G.
    02:36
    tiempo
    89
    puntuacion
  4. 4
    Mariana Pérez Escalona
    Mariana Pérez Escalona
    03:59
    tiempo
    89
    puntuacion
  5. 5
    Jorge Angel Alcalá Pérez
    Jorge Angel Alcalá Pérez
    03:40
    tiempo
    83
    puntuacion
  6. 6
    Macías Anaya José Angel
    Macías Anaya José Angel
    04:42
    tiempo
    83
    puntuacion
  7. 7
    Granados Lobato Eduardo
    Granados Lobato Eduardo
    02:57
    tiempo
    80
    puntuacion
  8. 8
    Salazar Vázquez Diego Antonio
    Salazar Vázquez Diego Antonio
    02:27
    tiempo
    78
    puntuacion
  9. 9
    Leonardo López Zamora
    Leonardo López Zamora
    03:11
    tiempo
    78
    puntuacion
  10. 10
    03:37
    tiempo
    78
    puntuacion
¿Quieres aparecer en el Top 10 de este juego? para identificarte.
Crea tu propio juego gratis desde nuestro creador de juegos
Compite contra tus amigos para ver quien consigue la mejor puntuación en esta actividad

Top juegos

  1. tiempo
    puntuacion
  1. tiempo
    puntuacion
tiempo
puntuacion
tiempo
puntuacion
game-icon

Completar

Plurals in context [ING I - INF]

Complete the sentences with the correct option.

Nahum López Gómez
1

models counterparts scientists

The used a natural language - based logical inference dataset to create smaller language that outperformed much larger .

2

humans habilities programs

Our reaserch is about improving the of computer to understand and process natural language , the way speak and write .

3

labels models parameters models

Our self trained , 350 million parameter entailment , without human generated , outperformed supervised language with 175 billion .

4

model problems researchers

The cooked up an approach to long - standing of inefficiency and privacy associated with big , text - based AI

5

tasks times counterparts annotations

A logic - aware model that outperforms 500 - - bigger on some language understanding without human - generated , while preserving privacy and robustness with high performanc e

6

LLMs skills requirements interfaces

, which have shown some promising in generating language , art , and code , are computationally expensive , and their data can risk privacy leaks when using application programming for data upload .

7

counterparts models tasks

Smaller have been historically less capable , particularly in multitasking and weakly supervised , compared to their larger .

8

tasks models sentences

Something called ? textual entailment , ? a way to help these understand a variety of language , where are likely to be true or false .